Genetic interval neural networks for granular data regression
نویسندگان
چکیده
Granular data and granular models offer an interesting tool for representing data in problems involving uncertainty, inaccuracy, variability and subjectivity have to be taken into account. In this paper, we deal with a particular type of information granules, namely interval-valued data. We propose a multilayer perceptron (MLP) to model interval-valued input–output mappings. The proposed MLP comes with interval-valued weights and biases, and is trained using a genetic algorithm designed to fit data with different levels of granularity. In the evolutionary optimization, two implementations of the objective function, based on a numeric-valued and an interval-valued network error, respectively, are discussed and compared. The modeling capabilities of the proposed MLP are illustrated by means of its application to both synthetic and real world datasets. 2013 Elsevier Inc. All rights reserved.
منابع مشابه
پیش یابی ارتفاع موج شاخص در خلیج فارس با استفاده از شبکه های عصبی مصنوعی و مقایسه آن با درخت های تصمیم رگرسیونی
Prediction of wave height is of great importance in marine and coastal engineering. In this study, the performances of artificial neural networks (feed forward with back propagation algorithm) for online significant wave heights prediction, in Persian Gulf, were investigated. The data set used in this study comprises wave and wind data gathered from shallow water location in Persian Gulf. Curre...
متن کاملConstruction cost estimation of spherical storage tanks: artificial neural networks and hybrid regression—GA algorithms
One of the most important processes in the early stages of construction projects is to estimate the cost involved. This process involves a wide range of uncertainties, which make it a challenging task. Because of unknown issues, using the experience of the experts or looking for similar cases are the conventional methods to deal with cost estimation. The current study presents data-driven metho...
متن کاملComparison of Genetic and Hill Climbing Algorithms to Improve an Artificial Neural Networks Model for Water Consumption Prediction
No unique method has been so far specified for determining the number of neurons in hidden layers of Multi-Layer Perceptron (MLP) neural networks used for prediction. The present research is intended to optimize the number of neurons using two meta-heuristic procedures namely genetic and hill climbing algorithms. The data used in the present research for prediction are consumption data of water...
متن کاملOptimal Portfolio Allocation based on two Novel Risk Measures and Genetic Algorithm
The problem of optimal portfolio selection has attracted a great attention in the finance and optimization field. The future stock price should be predicted in an acceptable precision, and a suitable model and criterion for risk and the expected return of the stock portfolio should be proposed in order to solve the optimization problem. In this paper, two new criterions for the risk of stock pr...
متن کاملPareto Optimization of Two-element Wing Models with Morphing Flap Using Computational Fluid Dynamics, Grouped Method of Data handling Artificial Neural Networks and Genetic Algorithms
A multi-objective optimization (MOO) of two-element wing models with morphing flap by using computational fluid dynamics (CFD) techniques, artificial neural networks (ANN), and non-dominated sorting genetic algorithms (NSGA II), is performed in this paper. At first, the domain is solved numerically in various two-element wing models with morphing flap using CFD techniques and lift (L) and drag ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Inf. Sci.
دوره 257 شماره
صفحات -
تاریخ انتشار 2014